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Abstract: Nanomechanics of individual Carbon and Boron-Nitride nanotubes and their
application as reinforcing fibers in polymer composites has been reviewed with interplay
of theoretical modeling, computer simulations and experimental observations. The
emphasis in this work is on elucidating the multi-length scales of the problems involved,
and of different simulation techniques that are needed to address specific characteristics
of individual nanotubes and nanotube polymer-matrix interfaces. Classical molecular
dynamics simulations are shown to be sufficient to describe the generic behavior such as
strength and stiffness modulus but are inadequate to describe elastic limit and nature of
plastic buckling at large strength. Quantum molecular dynamics simulations are shown to
bring out explicit atomic nature dependent behavior of these nanoscale materials objects
that are not accessible either via continuum mechanics based descriptions or through
classical molecular dynamics based simulations. As examples, we discus local plastic
collapse of carbon nanotubes under axial compression and anisotropic plastic buckling of
Boron-Nitride nanotubes. Dependence of the yield strain on the strain rate is addressed
through temperature dependent simulations, a transition-state-theory based model of the
strain as a function of strain rate and simulation temperature is presented, and in all cases
extensive comparisons are made with experimental observations. Mechanical properties
of nanotube-polymer composite materials are simulated with diverse nanotube-polymer
interface structures (with van der Waals interaction). The atomistic mechanisms of the
interface toughening for optimal load transfer through recycling, high-thermal expansion
and diffusion coefficient composite formation above glass transition temperature, and
enhancement of Young’s modulus on addition of nanotubes to polymer are discussed
and compared with experimental observations.
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1. Introduction

Since the discovery of multi-wall carbon nanotubes in 1991 by lijima, (lijima
1991) [ 1], and subsequent synthesis of single-wall carbon nanotubes by others (lijima [2]
and Bethune [3]) there are numerous experimental and theoretical studies of their
electronic, chemical, and mechanical properties. Chemical stability, diverse electronic
properties (ranging from 1eV band gap semiconductors to metals), and predicted extreme
strength of the nanotubes have placed them as fundamental building blocks in the rapidly
growing field of nanotechnology. Diverse nanoscale device concepts have been proposed
to develop nanoscale electronic devices, chemical sensors, and also high strength
nanotube composite materials with sensing and actuating capacity. To realize the
proposed devices and materials concepts, it is crucial to gain detailed understanding on
the fundamental limits of nanotubes’ diverse properties. Atomistic simulations are very
promising approach to achieve this goal since one can investigate a large range of
possibilities which are often very difficulty to access through experimental studies. The
insights and detailed mechanistic understanding provides valuable guiding principles to
optimize and develop novel nanoscale device and materials concepts.

In this review chapter, we focus our discussion on the mechanical properties of
carbon nanotubes in the context of high strength nanotube composite materials. For the
purpose of high strength nanomaterials application of nanotubes, it is crucial to gain
detailed understanding on nanotubes’ intrinsic mechanical properties as well as their
interaction with polymer matrix in nanotube-polymer composite materials. First, we have
examined the elastic and failure properties of nanotube to understand their fundamental
strength and stiffness behavior, Initial atomistic simulations of nanotube mechanics have
predicted unusually large Young's modulus (of up to 5TPa or 5 times larger than the
modulus of diamond) and elastic limits (of up to 20-30% strain before failure). These
predictions immediately raised the intriguing possibility of applying the nanotubes as
super strong reinforcing fibers with orders of magnitude higher strength and stiffness than
any known material. Subsequently, more accurate simulations employing tight-binding
molecular dynamics methods and ab-initio density functional total energy calculations
involving realistic strain rate, temperature dependence, and nanotube sizes have provided
more realistic values of 1TPa as Young’s modulus and 5-10% elastic limit of the strain
before failure. These values predict 50 GPa as the nanotube strength in good agreement
with recent experimental observations. Second, we have examined the mechanical
properties of nanotube-polymer composite materials to understand the mechanisms of
mechanical load transfer between a polymer matrix and embedded nanotubes. This
research area is rapidly moving forward with exciting possibilities of designing and
developing very small structures (e.g., MEMS devices) with tailored mechanical
properties. Near term practical applications of nanotubes are expected to emerge from the
composite materials as they do not require a precise control of nanotube positioning for
device applications. For the future development of smart nanotube-polymer composite
materials computational modeling will play a catalytic role in facilitating and accelerating
the design and fabrication of composite materials with sensing, actuation, and self-
healing capabilities.

2. Carbon Nanotubes: Structure and Properties

A single-wall carbon nanotube (SWNT) is best described as a rolled-up tubular shell
of graphene sheet [Fig.1a), which is made of benzene-type hexagonal rings made of
carbon atoms. {4, 5] The body of the tubular shell is thus mainly made of hexagonal rings
(in a sheet) of carbon atoins, where as the ends are capped by (half-)dome shaped half-
fullerene molecule. The natural curvature in the side-walls is due to the rolling of the
sheet into the tubular structure, whereas the curvature in the end caps is due to the
presence of topological (pentagonal ring) defects in the otherwise hexagonal structure of
the underlying lattice. The role of the pentagonal ring defect is to give a positive
(convex) curvature to the surface, which helps in closing of the tube at the two ends. A
multi-wall nanotube (MWNT) is a rolled-up stack of graphene sheets into concentric
SWNTs, with the ends again either capped by half-fullerenes or kept open. A
nomenclature (n,m) used to identify each single-wall nanotube, in the literature, refers to
integer indices of two graphene unit lattice vectors corresponding to the chiral vector of a
nanotube, {4] Chiral vectors determine the directions along which the graphene sheets are
rolled to form tubular shell structures and perpendicular to the tube axis vectors as
explained in the Ref. 4. The nanotubes of type (n,n), as shown in Figure 1b, are
commonly called armchair nanotubes because of the \_/\_/ shape, perpendicular to the
tube axis, and have a symmetry along the axis with a short unit cell (0.25 nm) that can be
repeated to make the entire section of a long nanotube. Another nanotubes of type (n, 0)
are known as zigzag nanotubes (Fig 1c) because of the AV shape perpendicular to the
axis and also have a short unit cell (0.43 nm) along the axis. All the remaining nanotubes
are know as chiral or helical nanotubes and have longer unit cell sizes along the tube
axis. Details of the symmetry properties of the nanotubes of different chiralities are
explained in detail in Refs. 4 and 5.

The single and multi-wall nanotubes are interesting nanoscale materials for the
following four reasons:

» Single and multi-wall nanotubes have very good elasto-mechanical properties
because the two dimensional arrangement of carbon atoms in a graphene sheet
allows large out-of-plane distortions, while the strength of carbon-carbon in-plane
bonds keeps the graphene sheet exceptionally strong against any in-plane
distortion or fracture. These structural and materials characteristics of nanotubes
point towards their possible use in making next generation of extremely
lightweight but highly elastic and very strong composite materials.

s A single-wall nanotube can be either metallic or semiconducting, depending on
its chiral vector (n,m), where n and m are two integers. The rule is that when he
difference n-m is a multiple of three a metallic nanotube is obtained. If the
difference is not a multiple of three, a semiconducting nanotube is obtained. In
addition it is also possible to connect nanotubes with different chiralities creating
nanotube hetero-junctions, which can form a variety of nanoscale molecular
electronic device components.

o Nanotubes, by structure, are high aspect-ratio objects with good electronic and
mechanical properties. Consequently the applications of nanotubes in field-
emission displays, or scanning probe microscopic tips for metrological purposes
have started to materialize even in the commercial sector.



¢ Since nanotubes are hollow, tubular, caged molecules they have been proposed as
lightweight large surface area packing material for gas-storage and hydrocarbon
fuel storage devices, gas or liquid filtration devices, as well as nanoscale
containers for molecular drug-delivery and casting structures for making
nanowires and nanocapsulates.

A broad interest in nanotubes derives from the possibilities of a variety of
applications in all of the abave four technologically interesting areas. In this review we
mainly focus on the exceptionally stiff and strong mechanical properties that can be used
for making future generation of lightweight structural composite materials. The other
three interesting electrical, surface area, and aspect-ratio characteristics could be used to
impart specific functional behavior to the thus prepared composite materials.

3. Simulation Techniques:

In the earlier days the structural, mechanical and thermal properties of interacting,
bulk condensed matter systems were studied with analytical approximation methods for
infinite systems. Numerical computer simulations of the finite sample systems have
become the more common recently because powerful computers to simulate nano-scale
systems in full complexity are readily available. Atomistic molecular dynamics (MD)
refers most commonly to the situation where the motion of atoms or molecules is treated
in approximate finite difference equations of Newtonian mechanics. Except when
dealing with very light atoms and very low temperatures, the use of classical MD method
is well justified.

The MD code for carbon based systems involve analytic many-body force field
functions such Tersoff-Brenner [6] potentials for C-C and C-H interactions. {7] The
Tersoff-Brenner potential is specially suited for carbon based systems, such as diamond,
graphite, fullerenes and nanotubes, and has been used in a wide variety of scenarios with
results in agreement with experimental observations. Currently, there are no universal
analytic many-body force field function that works for all materials and in all scenarios.
In its global structure a general MD code typically implements an algorithm to find a
numerical solution of a set of coupled first-order ordinary differential equations given by
the Hamiltonian formulation of Newton's second law. [8] The equations of motion are
numerically integrated forward in finite time steps using a predictor-corrector method. A
major distinguishing feature of the Tersoff-Brenner potential for carbon based systems is
that short-range bonded interactions are reactive so that chemical bonds can form and
break during the course of a simulation. Therefore, compared to some other molecular
dynamics codes, the neighbor list describing the environment of each atom includes only
a few atoms and needs to be updated more frequently. The computational cost of the
many-body bonded interactions is relatively high compared to the cost of similar
methods with non-reactive interactions with simpler functional forms. As a result, the
overall computational costs of both short-range interactions and long-range, non-bonding
van der Waals (Lennard-Jones 6-12) interactions are roughly comparable. For large scale
atomistic modeling (10°-10° atoms), multiple processors are used for MD simulations,
and the MD codes are generally parallelized. [}

In recent years several more accurate quantum molecular dynamics schemes have
been developed in which the forces between atoms are computed at each time step via
quantum mechanical calculations within the Born-Oppenheimer approximation. The

dynamic motion for ionic positions are still governed by Newtonian or Hamiltonian
mechanics, and described by molecular dynamics. In the intermediate regimes, for up to
few thousand atoms, the tight-binding (10] molecular dynamics (TBMD) approach
provides very good accuracy for both structural and mechanical characteristics. The
computational efficiency of the tight-binding method derives from the fact that the
quantum Hamiltonian of the system can be parameterized. Furthermore, the electronic
structure information can be easily extracted from the tight-binding Hamiltonian, which
in addition also contains the effects of angular forces in a natural way. In a generalized
non-orthogonal tight-binding molecular dynamics (TBMD) scheme Menon and
Subbaswami have used minimal number of adjustable parameters to develop a
transferable scheme applicable to clusters as well as bulk systems containing Si, C, B, N
and H. [11,12] The main advantage of this approach is that it can be used to find an
energy minimized structure of a nanoscale system under consideration without symmetry
constraints.

Additionally, ab-initio or first principles method is a simulation method to solve
complex quantum many-body Schroedinger equation using numerical algorithms.[13]
Ab-initio method provides more accurate description of quantum mechanical behavior of
materials properties even though the system size is currently limited to only about few
hundred atoms. Current ab-initio simulation methods are based on a rigorous
mathematical foundation of the density functional theory (DFT). [14] [15] This is derived
from the fact that the ground state total electronic energy is a functional of the density of
the system. The ground state density is expressed by single electron wave functions, and
these single electrons are governed by self-consistent Schroedinger equation with
unknown exchange-correlation potential. The exchange-correlation potential is
approximated by the local density approximation (LDA). For practical applications the
DFT-LDA method has been implemented with a psendopotential approximation and a
plane wave (PW) basis expansion of single electron wave functions.[13] These
approximations reduce the electronic structure problem as a self-consistent matrix
diagonalization problem. One of the popular DFT simulation programs is Vienna Ab
intio Simulation Package (VASP), which is available through a license agreement.
(VASP) [16]

For computational nanomechanics of nanotubes all the three simulation methods can
be used in a complementary manner to improve the computational accuracy and
efficiency. Based on experimental observations or theoretical dynamic and structure
simulations, the atomic structure of a nanosystem can first be investigated. After the
nanoscale system configurations have been finalized, the functional behaviors of the
system are investigated through static ab-initio electronic energy minimization schemes.,
We have covered this in detail in a recent review article focusing exclusively on
computational nanotechnology. [17}

In the following we describe nanomechanics of nanotubes and nanotube-polymer
composites, and compare the simulation results, where ever possible, with experimental
observations.

4. Modulus of Nanotubes:

The modulus of the nanotube is a measure of the strength and stiffness against
small axial stretching and tensile strains as well as non-axial bending and torsion strains



on the nantubes. The simulation results mainly pertain to the strength and stiffness of
SWNTs, where as most of the experimental observations available so far are either on
MWNTs or ropes/bundles of nanotubes. For axial strains, SWNTs are expected to be
stiffer than the MWNTSs because of smaller radii of curvature and relatively defect free
structure. For non-axial strains such as bending and torsion, the MWNTS are expected to
be stiffer than the SWNTs. In this section, the axial, bending and torsion moduli of
SWNTs are described and compared with experimental observations known so far.

4a. Young’s Modulus for Axial Deformations

As described above, single-wall carbon nanotubes have tubular structure that can
be conceptualized by taking a graphene sheet, made of C atoms, and rolling into long
tubular shape. Contributions to the strength and stiffness of SWNTs come mainly from
the strength of graphene in-plane covalent C-C bonds. It is expected that modulus,
strength and stiffness of SWNTs should be comparable to the in-plane modulus and
strength of graphene sheet. In the tubular shape, however, the elastic strain energies are
effected by the by the intrinsic curvature of C-C bonds. Robertson et al (1992) [18] have
found, (using both Tersoff potential and Tersoff-Brenner potential), that the elastic
energy of a SWNT scales as xPn.. where R is the radius of the tube. This is similar to as
deduced from the continuum elastic theory. [19] The elastic energy of CNTSs responding
to a tensile stress in their study suggested that SWNTs are very strong materials and that
the strength is mainly due to the strong C-C sp? bonds on the nanotube. The Young's
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modulus of a SWNT is defined as ¥ = m\. Wmm ,
volume of the nanotube. Using an empirical force constant model, J.P. Lu (1997) [20)
found that the Young’s modulus of a SWNT is around 970GPa, which is close to thatof a
graphite plane, and is independent of tube diameter and chirality. A. Rubio et al (1998)
{21] used a better description for interatomic forces through a non-orthogonal tight-
binding method and found the Young's modulus to be around 1.2TPa, which is better
than that of graphite, and is also slightly dependent on the tube size especially for small
diameter nanotubes (D <1.2nm). High surface curvature for small diameter nanotubes
tends to decrease the Young’s modulus. In both of these studies the thickness of the
nanotube wall was assumed to be 0.34nm and the computed results are within the range
of experimental observations.

Young’s moduli of variety of non-carbon nanotubes as a function of tube diameter
have been calculated and shown in figures 2 and 3. Initial computational studies, [22]
using the same Tersoff-Brenner potential, however, reported the values of Young's
modulus to be as high as 5.5TPa. This was mainly due to a very small value of wall
thickness (h~0.06nm) used in these studies. It has been suggested that by investigating
the value 92E/9e? instead of Young’s modulus, the ambiguity of thickness of CNT wall
can be avoided. Using the density functional theory (with pseudopotentials) Rubio et al
have found that the stiffness of SWNTs is close to that of in-plane stiffness of graphite,
and SWNTs made of carbon are strongest as compared with other non-carbon, such as
boron-nitride (BN) or BCxNy, nanotubes known so far. (23} Using a non-orthogonal
tight-binding molecular dynamics method and DFT method, we recently carried [24] out

where E is the strain energy and Vis the

axial compression of single-wall C and BN nanotubes and have found the Young's
modulus to be about 1.2 TPa, and that the modulus of a similar BN nanotube is about
80% of that of the carbon nanotube, These results are in qualitative and quantitative
agreement with Rubio’s DFT results and the general experimental observations known so
far. The Young’s modutus of MWNTS and ropes of SWNTs have also been estimated in
Rubio et al’s studies and shown in Fig. 3.

4b. Bending Stiffness and Modulus
Besides axial strains discussed above, SWNTs have also been subjected to

bending and torsional strains. The bending stiffness of a SWNT is defined as 14k

Ldct’
where E is the total strain energy, L is the length, and C is the curvature of the bent
nanotube, which is related with the bending angle 8 as C = W From the elastic theory of

bending of beams, the strain energy of a bent nanotube can be expressed
asE = 0.5YhL 216 2d1l, where Y the Young’s modulus of the SWNT, and h is

the thickness of the wall. [25) The integral is taken around the circumference of the
nanotube, and f is distance of atoms from the central line (or the bent axis) of the tube.
From this expression, the bending stiffness K is found to be equal to Yh(mr?), i.e., and
scales as cubic of the radius of the tube. Results from molecular dynamics simulation
with Tersoff-Brenner potential show that stiffness K scales as R (Figure 4), which is in
good agreement with scaling predicted by the continuum elastic theory. The
corresponding bending Young’s modulus (Y,) of SWNTs with varied diameters can be
calculated from above equation. For a small diameter SWNT Y, is found to be about 0.9
TPa, smaller than the stretching Young’s modulus calculated from the tight-binding
method or first principle theory. The computed smaller value is also similar to what
Robertson et al (1992) {18] showed in their study of the elastic energy of SWNTs. The
qualitative agreement is rather good. An additional feature is that the bending Young's
modulus decreases with the increase in tube diameter. This is mainly due to more
favorable out-of-plane displacements of carbon atoms on a larger diameter tube, resulting
in flattening of the tube in the middle section.

Poncharal et al (2000) [26) have experimentally studied the bending Young's
modulus of MWNTs (diameter >10nm) using electrically induced force and have found
that the bending Young’s modulus is decreased sharply with the increase in tube
diameter, (Figure 5a) which they have attributed to the wave-like distortion of the
MWNT as shown in Figure 5b.

At a large bending angle, SWNTSs can buckle sideways similarly to a macroscopic
rod, at which non-uniform strain is induced. Shown in Figure 6a and 6b are the images
from high-resolution electron microscope [27] of the buckling of bent SWNT and
MWCNT. Such buckling at large bending angle is closely related with buckling of
SWNT under axial compression stress, which will be discussed later.



4c. Torsion stiffness and modulus
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The torsion stiffness of a CNT is defined as K = Wuw%. where E is the total
strain energy and 0 is the torsion angle. The shear strain is related with torsion angle as
RO

£= ihl, where R is the radius of tube and L is its length. From continuum elastic theory,

the total strain energy of a cylinder can be written ummn;wm*:, €’dv, where G is
shear modulus of the tube. The torsion stiffness thus is related with G as
K=— =
L de?
7, we show our recently computed values of the torsion stiffness of several armchair and
zigzag carbon nanotubes using Tersoff-Brenner potential. The dependence of the torsion
stiffness on the radius of tube is found to be as K o R*® (for tube diameter >0.8nm).
This is in excellent agreement with the prediction of cubic dependence from the
continuum elastic theory.

The shear modulus of CNTs found to be around 0.3TPa and is not strongly
dependent on diameters (for D>0.8nm). This value is smaller than that of about 0.45Tpa
in Lu (1997)’s study, [20] calculated with an empirical force constant model. For small
diameter tube. such as a (5,5) nanotube, the shear modulus derivates away from the
continuum elastic theory description.

, where h is the thickness of the wall of the nanotube. In Figure

4d. Experimental status: modulus of Carbon nanotubes

The high strength of carbon nanotubes has been verified by several experiments.
M. Treacy et al (1996) [28] studied the Young's modulus of MWNTSs by measuring the
thermal vibrations, and Y was found to be about (1.8+1.4) TPa. Later studies by Wong et
al (1997) {291 on MWCNT found the Young's modulus to be about (1.28+0.59) TPa by
measuring the restoring force of bent nanotubes. A. Krishnan et al (1998) [30] have
conducted study on the stiffness of single-walled nanotubes and have found an average
Young’s modulus to be about 1.25Tpa. This is close to the experimental results obtained
by Salvetat et al (1999), [31] where Y is found to be about 1TPa.

S. Plastic Deformation and Yielding of Nanotubes

Nanotubes under large strain go through two kinds of structural changes. First,
early simulations by Yakobson et al (1996) [22] showed that under axial compression,
nanotubes exhibit structural instabilities resulting in sideways buckling but the deformed
structure remains within elastic limit. Second, under large strains, bonding
rearrangements or transitions occur giving rise to permanent damage, plastic deformation,
or yielding of nanotubes. In this section, we discus plastic deformation and failure nnder
large axial compression and tensile strains. Critical dependence of the yielding of
nanotubes on the applied strain-rate and the kinetic temperature of the simulation is also
discussed through a model that shows that nanotubes may typically yield with in 5-10%

tensile strain at room temperature. This finding is in good agreement with the

experimental observations on the breaking and yielding of MWNTSs and the ropes or
bundles of SWNTs.

Sa. Plastic deformation under compressive strain

Yakobson et al (1996) [22] found that SWNTs form non-uniform “fins” like structure
under large compressive strain (Fig 8), The sideways displacement or buckling of tubes
occur, for larger strain, and contributes towards the relief of strain energy from the “fins”
like structure but the tubes remain super-elastic for more than 20% compressive strains.
Experiments have observed sideways buckling feature in compressed multi-wall
nanotubes in polymer composite materials. [32] Another mode of plastic deformation of
compressed thin nanotubes is also observed in the same experiments, [32] i.e., the tubes
remain essentially straight but the structure locally collapses as shown in figure 9.
Srivastava et al (1999) [33) used tight-binding molecular dynamics method, and have
found that with in Euler buckling length limitation, an (8,0) carbon nanotube locally
collapses at 12% compressive strain. The local plastic collapse is due to a graphitic (sp?)
to diamond like (sp®) bonding transition at the location of the collapse and the release of
excess strain in the remaining uncollapsed section. The released strain in the uncollapsed
section drives the local collapse with a compressive pressure as high as 150 GPa at the
location of the collapse (Figure 10).

Srivastava et al (2001) [24] have also studied the influence of changes in the
chemical nature on the nanomechanics and the plasticity of nanotubes. For example, this
is done by considering the structure, stiffness and plasticity of boron-nitride (BN)
nanotubes. The results for the Young’s modulus of BN nanotubes are discussed above. It
turns out that BN nanotubes are only slightly less stiff (80-90%) as compared to their
carbon equivalent. The tight-binding MD and ab-initio total energy simulations further
show that, due to BN bond rotation effect, (BN) nanotubes show anisotropic response to
axial strains. For example, Fig. 11 shows spontaneous anisotropic plastic collapse of a
BN nanotube that has been compressed at both ends, but the strain release is shown to be
more favorable towards nitride atoms in the rotated BN bonds. This results in the
anisotropic buckling of the tube towards one end when uniformly compressed at both
ends.
5b. Plastic deformation under tensile strain

For the case of tensile strain, Nardelli et al (1998) [34] have studied the formation
of Stone-Wales (SW) bond rotation induced defects as causing the plastic deformation of
nanotubes. This mechanism is explained by formation of heptagon-pentagon pair (5775)
defects in the wall of nanotubes. (Fig. 12) The formation energy of such defects is
decreased with the applied strain, and is also dependent on the diameter and chirality of
the nanotube under consideration. At high temperatures, plastic flow of the thus formed
defects occurs, and that can even change the chirality of the nanotube (Fig. 13). On
further stretch, the plastic flow and increased formation of more such defects continue
until necking and breaking of the nanotube occurs. Zhang et al (1999) [35] have also
studied the plastic deformations of SWNTs induced by the Stone-Wales dislocations
under tensile strain, and they have found that the SW defects can release the strain energy



in the system. Zhang et al note that SW defects form more favorably on an armchair
nanotube than on a zigzag nanotube because the rotation of the C-C bond can compensate
more tensile strain along the axis in the former case.

Sc. Strain-rate and temperature dependence of yielding of nanotubes

In all the simulations and discussions, so far, no dependence of the failure or
yielding of nanotubes on the rate of the applied strain and the temperature of the system
has been mentioned. This is because all of the above results were either obtained with the
ab-initio or tight binding static total energy calculations or with MD simulations at much
higher strain rates (than ever possible in experiments) where barriers to collapse would be
artificially higher. In reality, it is expected that barrier to collapse and yielding strain at
experimentally realizable strain rates and at room temperatures maybe lower than the
simulation values reported so far. The yielding failure of SWNTs in different scenarios
depends on the formation of defects discussed above. Classical MD simulations report
values {36] as high as 30% yielding strain under tensile stretch and above 20% under
compression. [22] Due to the limitations in the time scales of the phenomenon that can be
simulated with MD, the nanotubes were typically strained at 1/ns at 300-600K. The
experiments so far suggest much lower yielding strains for nanotubes. Waiters et al
(1999) [37] have studied the SWNT rope under large tensile strain and observed the
maximum strain to be 5.840.9% before yielding occurs. Yu et al (2000) [38] have found
similar breaking strain (5.3% or lower) for different SWNT rope samples (Figure 14a).
Similar measurements on MWNTSs by Yu et al (2000) [39] show breaking strain to be
about 12% or lower (the lowest one is 2% in their experiments) (Figure 14b). The
reported lower yielding strains in experiments could be partly due to defected tubes in the
SWNT ropes or could be due to much (orders of magnitude) lower rates at which strain
can be applied in experiments.

The breaking, collapse or yielding of the nanotubes is clearly a temperature and
strain rate dependent phenomenon, and a model needs to be developed to relate the
reported much higher yielding strain from simulation studies to the so far observed lower
yielding strain in experiments. We (Wei et. al, 2002) {40] have recently developed a
transition-state theory based model for deducing strain rate and temperature dependence
of the yielding strain as simulated in MD studies. According to Arrhenius formula the
transition time for a system to go from pre-yielding state to another (post yielding) state
is dependent on the temperatures as ¢ = .—_\amb:: , where E, is the activation energy and v
is the effective vibration frequency or attempts for the transition. For a system with strain
£, the activation barrier is lowered as E, = E,® ~ kVe , where ks force constant, and V is
the activation volume. At higher temperatures, therefore, a system has larger kinetic
energy to overcome the barrier between the pre-yielding and post-yielding states and the
transition time is shortened. Similarly, the lower strain rate at each step allows the
system to find an alternative minimum energy path and thus again lowering the effective
barrier height separating the pre- and post-yielding states.

For example, yielding strain of a 6nm long (10,0) SWNT at several temperature
and strain rate varying between 107/ psto 107/ ps is shown in Figure 15. Yielding

strains are found to be 15% at low temperature and 5% at high temperature at
about10™ / ps strain rate. Stone-Wales rotations are found to first appear before necking,
resulting in heptagon and pentagon pairs, which provide the cores for formations of larger
rings, and further resulting in the breakings of the nanotubes (Figure 16). Detailed
analysis shows that [40] the complex dependence on the temperature and the strain rate

E, KT, N&

with transition state theory (TST) can be expressed as g, = +——In(——), where
KT YV n

site

E, is the averaged barrier for the yielding initiating defect, N is the number of processes
involved in the breaking of the tube, Y is Young's modulus, and n,,, is number of sites

available for yielding, which is dependent on the structural details, and & is a constant
refated with vibration frequency of C-C bonds. For a more realistic strain rate such as
1%/hour, the yielding strain of the 6nm long (10,0) CNT can be estimated to be around
11%. A longer CNT will have a smaller yielding strain, as more sites are available for
defects. The difference between the yielding strain of a nanometer long CNT and of a
micron meter long CNT can be around 2% according to the above expression for the
yielding strain, {40] The advantage of such a model is that one could directly compute the
activation energy for yielding defect formation and get the yielding strain from the
developed model, Within error bars on the known activation energies computed so far,
our model is in very good agreement with experimental observations.

Under compressive strain, on the other hand as described above, Srivastava et al
(1999) [33] showed that CNT collapses with the graphitic to diamond like bonding
transition at the location of the collapse. Another observation is the formation of non-
uniform “fins” like structure by Yakobson et al (1996) [22] that gives to side-ways Euler
buckling of the tube and no diamond-like bonds or defects would form within the
structure. Recent MD studies at finite temperatures {Wei et. al., 2001) [41] give different
results. Using the same Tersoff-Brenner potential in MD studies Wei et al (2001) [41]
show that, with thermal activation, nanotubes under compressive strain can form both
diamond like bonds and SW like dislocation defects at high temperatures (Figure 17).
Similar analysis of nanotubes under compressive strain, therefore is more complicated
and currently underway because sideways buckling can occur before tube yields with SW
dislocation or diamond like defect formation.

6. Structure and Mechanics of Nanotube Composites

As discussed above, the strong in-plane graphitic C-C bonds make defect free
SWNTs and MWNTs exceptionally strong and stiff against axial strains and very flexible
against non-axial strains. Additionally nanotubes also have very good electrical and
thermal conduction capabilities. Many applications, therefore, are proposed for nanotubes
as additive fibers in light weight multi-functional composite materials. Several recent
experiments on the preparation and characterization of nanotube-polymer composite
materials have also appeared [42-44] These measurements suggest modest enhancement
in strength characteristics of CNT-embedded polymer matrices as compared to the bare
polymer matrices. Vigolo et al (2000) [42] have been able to condense nanotubes in the



flow of a polymer solution to form nanotube ribbons as well. These can be strongly bent
without breaking and have Young’s modulus that is an order of magnitude larger than
that of the bucky paper. In the following we discuss structural, thermal and mechanical
implications of adding SWNTs to polyethylene polymer samples.

6a. Structural and thermal behavior of nanotube-polyethylene composite

Thermal properties of polymeric materials are important from both processing and
applications perspective. As a function of temperature, polymeric materials go through
structural transformation from solid to rubber to liquid states. Many intermediate
processing steps are done in the liquid or rubber-like state before the materials is cooled
down to below glass transition temperature for the finally needed structural application.
Besides the melting process at high temperature 7,,, like other solid materials, the
structural and dynamic behavior of polymeric material above and below glass transition
temperature T, is important to investigate. Below T, the conformations of polymer

chains are frozen, when the polymer is in a solid glassy state, and in between T, and 7,

polymers are in a rubber like state with viscous behavior. Preliminary experimental and
simulation studies on the thermal properties of individual nanotubes show very high
thermal conductivity of SWNTs. [45] It is expected, therefore, that nanotube

reinforcement in polymeric materials may also significantly change the thermal and
structural properties as well.

Atomistic MD simulation studies of the thermal and structural properties of
nanotube-polyethylene composite have been attempted recently. [46] Polyethylene isa
linear chain molecule with CH, as the repeating unit in the chain. The density as a
function of temperature for a pure polyethylene system (a short chain system with 10
repeating unit in each polymer with 50 polyethylene chains in the simulation sample) and
a nanotube-polyethylene composite system with about 8% volume ratio capped
nanotubes in the mixture is shown in Fig. 18. Both systems show discontinuity in the
stope of the density-temperature curve. The discontinuities represent glass transition
temperatures in the two cases. Two features are apparent from in the figure. First, the
glass transition temperature of the composite system has increased to higher value than
the pure polyethylene system. Second, above glass transition temperature in both the
cases, the density as a function of temperature in the composite case decreases at much
faster rate than the decrease in the pure polyethylene system case. This means that the
volume thermal expansion coefficient of the composite has increased to a larger value
above glass transition temperature. The volume thermal expansion coefficient for the
composite system above glass transition temperature is found to be 12¢10™ K", which
is 40% larger than that of the pure polyethylene system above T,. The increase in the

thermal expansion coefficient due to mixing of SWNTs in the polymer sample is
attributed 1o the increased excluded volume due to thermal motions of the nanotubes in
the sample. In the same simulations we also found that, above glass transition
temperature, the self-diffusion coefficient of the polymer molecules in the composite
increases as much as 30% above their pure polyethylene sample values. The increase in
the diffusion coefficient is larger along the axis of the added nanotube fibers and could

help during the processing steps due to better flow of the material above glass transition
temperature.

b. Mechanical behavior of nanotube-polyethylene composite

Using fibers to improve the mechanical performance of a composite material is a
very common practice and the related technology has been commercialized for quite
some time. Commonly used fibers are glass, carbon black, or other ceramics. These not
only can add structural strength to the material but also can add desired functionality in
thermal and electrical behavior. The structural strength characteristics of such composite
materials depend on the mechanical load transfer from the matrix to the fiber and the
yielding of the coupling between the two. Mechanical load from matrix (o the fibers in a
composite is transferred through the coupling between the two. In some cases, the
coupling is through chemical inter-facial bonds, which can be covalent or non-covalent in
nature, while in other the coupling could be purely physical in nature through non-bonded
Van der Waals (VDW) interactions. Covalently coupled matrix and fibers are strongly
interacting systems while VDW coupled systems are weakly interacting systems but
oceur in a wide variety of cases. The aspect ratio of fiber, which is defined as L/D (L is
the length of the fiber and D is the diameter), is also an important parameter for the
efficiency of load transfers, because the larger surface area of the fiber is better for larger
load transfer. It is expected, therefore, that the embedded fibers would reach their
maximum strength under tensile load only when the aspect ratio is large. The limiting
value of the aspect ratio is found related with the interfacial shear stress T as
LID >c /21, where 0, is the maximum strength of the fiber. Recent experiments on

MWNTSs or SWNT ropes {38-39] have reported the strength of the nanotubes to be in the
range of S0GPa. With a typical value of 50MPa for the interfacial shear siress between
the nanotube and the polymer matrix, the limiting value of the aspect ratio is 500:1.
Therefore, for an optimum load transfer with a MWNT of 10nm diameter, the nanotube
should be at least Sum long, which is the range of the length of nanotubes typically
investigated in experiments on nanotube reinforced composites.

Earlier studies of the mechanical properties of the composites with macroscopic fibers are
usually based on continuum media theory. The Young’s medulus of a composite is

ithi Vo Yo Viw .
expected to be within a lower bound of = +-227% and an upper bound of
Yows  Yisr Vi

Y » Where Vi and V, . is the volume ratio of the fibers

and the matrix respectively. The upper bound obeys the linear mixing rale, which is
followed when the fibers are continuous and the bonding between fibers and the matrix is
perfect, i.e., the embedded fibers are strained by the same amount as the matrix
molecules. The lower bound is reached for the case of particulate filler composites
because the aspect ratio is close to one. For a nanotube fiber composite, therefore, an
upper limit can be reached if the nanotubes are long enough and the bonding with the
matrix is perfect. Additionally, short nanotubes, with Poisson ratio of about 0.1 to 0.2,
are much harder material as compared to the polymer molecules with Poisson ratio of
about 0.44. Therefore, as a nanotube containing polymer matrix is stretched under tensile
strain there is a resistance to the compression pressure perpendicularly to the axis of the

%3% = <E& 5;5 +V,

matrix



tube. For the short but hard nanotubes and soft polymer matrix mixture, this provides
additional mechanism of load transfer that is not possible in other systems.

An MD simulation of the mechanical properties of a composite sample was
recently performed with short nanotubes embedded in short-chained polyethylene system
at 50K, a temperature below glass transition temperature. The coupling at the interface
was through non-bonded Van der Waals interactions. Shown in Figure 19 is the strain-
stress curve for both the composite system and the pure polyethylene matrix system. The
Young’s modulus of the composite is found to be 1900MPa, which is about 30% larger
than that of the pure polymer matrix system. This enhancement is within the upper and
lower bound limits discussed above. We have found that further enhancement of the
Young’s modulus of the same sample can be achieved by carrying the system through
repeated cycles of the loading-unloading of the tensile strain on the composite matrix. In
agreement with the experimental observation, this tends to align the polymer molecules
with the nanotube fibers causing a better load transfer between the two. Frankland et al
(2000) [47] have studied the load transfer between polymer matrix and SWNTs, and have
found that there was no permanent stress transfer for 100nm long (10,10) CNTs within
polyethylene if only Ver der Waals interaction present. In the study they estimated that
the interfacial stress could be 70MPa with chemical bonding between SWCNT and
polymer matrix, while only SMP for the nonbonding case.
¢. Experimental status

Using nanotubes as reinforcing fibers in composite materials is still a developing
field from theoretical and experimental perspectives. Several experiments regarding the
mechanical properties of nanotube-polymer composite materials have been reported
recently. Wagner et al (1998) [48] experimentally studied the fragmentation of MWNTs
within thin polymeric films (urethane/diacrylate oligomer EBECRYL 4858) under
compressive and tensile strain. They have found that nanotube-polymer interfacial shear
stress T is of the order of SOOMPa, which is much larger than that of conventional fibers
with polymer matrix. This has suggested the possibility of chemical bonding between the
nanotubes and the polymer in their composites. The nature of the bonding, however, is
not clearly known. Later Lourie et al (1998) {49] have studied the fragmentation of
single-walled CNT within the epoxy resin under tensile stress. Their experiment also
suggested a good bonding between the nanotube and the polymer in the sample. Schadler
et al (1998) [43] have studied the mechanical properties of 5 wt. % MWNTs within
epoxy matrix by measuring the Raman peak shift when the composites are under
compression and or under tension. A large Raman peak shift is observed for the case of
compression, while the shift in the case of tension is not significant. The tensile modulus
of the composites is found to enhance much less as compared to the enhancement in the
compression modulus of the similar system. Schadler et al have attributed the differences,
between the tensile and compression strain cases, to the sliding of inner shells of the
MWNTSs when a tensile stress was applied. In cases of SWNT polymer composites, the
possible sliding of individual tubes in the SWCNT rope, which is bonded by Van der
Waals forces, may also reduce the efficiency of load transfer. It is suggested that for the
SWNT rope case, interlocking using polymer molecules might bond SWCNT rope more
strongly. Andrews at al (1999) [44] have also studied the composites of 5 wt. % of
SWNT embedded in petroleum pitch matrix and their measurements show an
enhancement of the Young’s modulus of the composite under tensile stress. Qian et al

(2000)’s measurement of a 1 wt. % MWNT-polystyrene composite under tensile stress
also show a 36% increase of Young’s modulus compared with the pure polymer
system.[50] The possible sliding of inner shells in MWCT and of individual tubes in a
SWNT rope was not discussed in these later two studies. There are at present no
experiments available on SWNT-polymer composite to compare above our simulated
values with the experimental observations. However, if it is assumed that polymer matrix
essentially bonds only to the outer shell of a MWNT embedded in a matrix, the above
simulation findings could be qualitatively compared with experiments. This issue needs
to be considered in more detail before any direct comparison is made between
theory/simulations and experimental observations.

7. Comments:

Nanomechanics of single-wall carbon nanotubes are discussed from a perspective of their
prospective applications in carbon nantube reinforced composite materials. Itis clear that
for single-wall carbon nanotubes, a general convergence has started to emerge between
the simulated Young's modulus values and the values observed in experiments so far.
The Young’s modulus is slightly larger than ! TPa, tubes can withstand about 5-10%
axial strains before yielding, and these corresponds to a stress of about 50 GPa before
nantubes yield. Bending and torsional modulus and stiffness have also been computed but
no comparison with experiments is available so far. A real progress is made in coming up
with a transition state theory based model of the yielding of SWNTs under tensile stress.
The yielding is identified as a barrier dependent transition between the pre- and post-
yielding configurations. The model, with in the error bars of the computed activation
barrier, correctly predicts that under tensile strain at realistic (experimentally realizable)
strain rates, yield occurs at about 5-10% applied strain, but not at high yielding strains of
20-30% as was predicted in the earlier MD simulations. Preliminary results of the
structural, thermal and mechanical characterization of nanotube polymer composites have
been obtained and show that important characteristics such as thermal expansion and
diffusion coefficients from the processing and applications perspective can be simulated
for computational design of nanotube composite materials. These simulations illustrate
the large potential of computational nanotechnology based investigations. For larger
system sizes, and realistic interface between nantubes and polymer, the simulation
techniques and underlying multi-scale simulations and modeling algorithms need to be

developed and improved significantly before high fidelity simulations can be attempted
in the near future.
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FIGURE CAPTIONS:

Figure L. (2) A graphene sheet made of C atoms placed at the corners of hexagons
forming the lattice with arrows AA and ZZ denoting the rolling direction of the sheet to
make (b) an (5,5) armchair and (¢) a (10,0) zigzag nanotubes, respectively.

Figure 2.Young’s modulus as a function of the tube diameter for C, BN, BC3, BC2N from
tight binding simulation. (From Hernandez et al, PRL, 80, 4502, 1998)

Figore 3. Young’s modulus verse tube diameter for ab initio simulation. Open symbols
for the multiwall CNT geometry and solid symbols for the single wall tube with
crystalline-rope configuration. The experimental value of the elastic modulus of graphite
is also shown. (From Sanchez-Portal et al, PRB 59, 12678, 1999)

Figure 4. Bending stiffness as a function of tube diameter from MD simulation with
Tersoff-Brenner potential. The stiffness is scaled as D*%, closed to the cubic dependence
on diameter D predicted from continuum elastic theory.

Tigure 5. (a) Bending modulus as a function of tube diameter. Solid circles are from
Poncharal et al (Science 283, 1513, 1999);others are from other experiments as referred
in Poncharal et al's paper. The dropping in the bending modulus is attributed to the onset
of a wavelike distortion in lateral direction as shown in (b). (b). High —resolution TEM
image of a bent nanotube (Radius of curvature = 400nm), showing the wavelike
distortion and the magnified views. (From Poncharal et al, Science 283, 1513, 1999)

Figure 6. HREM images of kink structures formed in bent CNTs. Shown on left is a
single kink in a SWCNT with diameter 1.2nm; Shown on tight is a kink on a MWCNT
with diameter 8 nm. (From lijima et al, J. Chem. Phys. 104, 2089, 1996)



Figure 7. The torsion stiffness as a function of tube diameter for a series of zigzag and
armchair SWNTs calculated with Tersoff-Brenner potential. The stiffness is scaled as
D for D>0.8nm, in agree with the prediction from continuum elastic theory.

Figure 8. (a) The strain energy of a compressed 6nm long (7,7) CNT, from Tersoff-
Brenner potential, has four singularities corresponding to the buckled structures with
shapes shown in (b) to (). The CNT is elastic up to 15% compression strain despite of
the highly deformed structures. The MD study was conducted at T = 0K. (From
Yakobson et al, PRL, 76 2511, 1996)

Figure 9. TEM image of fractured multiwalled carbon nanotubes under compression

within a polymeric film. The enlarged image is shown on right. (From Wagner et al,
PRL, 81 1628, 1998)

Figure 10. Shown on right from (a) to (d) are four stages of spontaneous plastic collapse
of the 12% compressed (8,0) CNT, with diamond like structures formed at the location of
the collapse. (From Srivastava el al, PRL, 832973, 1999)

Figure 11. Five stages of spontaneous plastic collapse of the 14.25% compressed (8,0)
BN nanotube. (a) Nucleation of deformations near the two ends, (b)-(d) anisotropic strain
release in the central compressed section and plastic buckling near the right end of the
tube, and () the final anisotropically buckled structure where all the deformation is

transferred toward the right end of the tube. The cross section of each structure is shown
on right.

Figure 12. The Stone Wales bond rotation on a zigzag and an armchair CNT, resulting
pentagon-heptagon pairs, can lengthen a nanotube, with the greatest lengthening for an
armchair tube. (From Zhang et al, PRL 81, 5346, 1998)

Figure 13. A heptagon-pentagon pair appeared on a 10% tensile strain (10,10)CNT at T
= 2000K. Plastic flow behavior of the Pentagon-heptagon pairs after 2.5ns at T=3000K
on a 3% tensile strained CNT. The shaded region indicates the migration path of the (5-7)
edge dislocation. (From Nardelli et al, PRL 81 4656, 1998)

Figure 14. Left: Eight stress versus strain curves obtained from the tensile-loading
experiments on individual SWCNT ropes. The Young’s modulus is ranged from 320GPa
to 1470 GPa. The breaking strain was found at 5.3% or lower. (From Yu et al, PRL 84
5552, 2000) Right: Plot of stress versus strain curves for individual MWCNTSs. The
Young's modulus is ranged form 270GPa to 950 GPa, with breaking strain around 12%
(one sample showed a 3% breaking strain). (From Yu et al, Science 287 637, 2000)

Figure 15. The yielding strain of a 6nm long (10,0) CNT is plotted as functions of strain
rate and temperature. Stone-Wales bond rotations appear first resulting in heptagon and
pentagon ring; then larger C rings generated around such defects followed by the necking

of the CNT; and the CNT is broken shortly after. (From MD simulations with Tersoff-
Brenner potential)

Figure 16. Left: A 9% tensile strained (5,5) CNT with numerous Stone-Wales bond
rotation defects at 2400K, and the following breaking of the tube. Right: An 11.5%
tensile strained (10,0) with a group of pentagon and heptagon centered by an octagon at

1600X, and the following breaking of the tube. (From MD simulation with Tersoff-
Brenner potential)

Figure 17. A 12% compressed (10,0) CNT at T=1600K. A Stone-Wales dislocation
defect can be seen at the upper section of the CNT. Several sp3 bonds formed in the
buckled region. (From MD simulation with Tersoff-Brenner potential)

Figure 18. Density as a function of temperature for a polyethylene system (50 chains
with Np =10), and a CNT-polyethylene composite (2nm long capped (10,0) CNT) The
CNT composite has an increase of thermal expansion above T,. (From a MD simulation

with Van der Waals potential between CNT and matrix. Dihedral angle potential and

torsion potential were used for the polyethylene matrix, and Tersoff-Brenner potential
was used for carbon atom on the CNT)

Figure 19. Plot of the stress versus strain curve for pure polyethylene matrix and CNT
composite (8 vol. %) at small strain region (T = 50K). Young’s modulus is increased
30% for the composite. (From MD simulation)
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